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Abstract: Amido-alcohol 4, derived from cyclopentadiene and resolved using Candida anrarctiua 
lipase B-mediated transacetylation, was transformed to (2R, 3R)-3-hydroxy-2-hydroxymethyl- 
pyrroIidine (2) and (ZS,3R)-3-hydroxyprol~n~ (1). 

(ZS‘, 3R )-3-~ydroxyproline (1) is a known, although rare, o-amino acid found in te~~mycin 
antibiotics.t2 It can be easily transformed into the Geissman-Waiss lactones and subsequently into a variety of 
pyrrolizidine aIkaloids,3% 4 including retronecine, platynecine, and croaibinecine. (25, 3R)-3-Hydroxyproline (1) 
and (2R. 3~~-3-hy~xy-2-hyd~x~thylp~lidi~e (2) are present as structural units in polio alkaloids 
(e.g., answine and aIexine$ indolizidine alkaloids (e.g., slaframine.7 castanospermine8) and unusual amino 
acids (e.g., detoxinineg). Several syntheses of cis-3-hydroxyproline have been reportcd.4~ fO A new approach, 
presented in this paper, is based on amino alcohol 311 derived from cyclopentadiene (Scheme 1). 
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Enzymatic resolution of racemic alcohol 4 was achieved by Candida anterctica lipase B (Novo Nordisk 

SP 43~)-rn~~~ ~ans~etylation in isopropenyl acetate to afford acetate (-)-5 in 45 % yield (>98% ee) and 
alcohol (+)4 in 43% yield (93% ee) (Scheme 2). 12 The enafltiopu~ty of alcohol (+)-4 was increased to >98% by 
a single zcrystatlization (hexane : diehloromethane). 
Scheme 2a 
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aReagents and conditions: (a) AcOOH then NHJMeUH (ref. 11); fb) BOQO, EtOAc; (c) Candida ~~~~~~cu 
lipase B (Novo Nordisk SP 4351, isopropenyl acetate, RT, 4 h; (d) KOH, MeOH (97%); (e) TBSCl, imidauile, 
DMF (98%) : (f) 03, MeOH - CHpCI2 (1 : 1). then DMS; (g) NaBH$N, AcOH, MeOH (f + g: 71%); (h) 
NaOCI, TE?MPO, KBr, NaHC03, EtzO-H2O; (i) Na104, RuC13 (cat.), MezC!O (h + i: 56%); (i) HCI, MeOH-Hz0 
(1: 91%; 2: 88%). 

Processing of (-)-5 by protective group exchange (O-AC -_$ O-TBS),t3 followed by ozonolysis and 
sodium cyanoborohydride reduction gave known prolinol (-)-6. t&t4 Acidic hydrolysis afforded pyrrolidine 2, 
while stepwise oxidationt5J6 (TEZMPO, NaOCi then RuCi3, NaIOq) led, after deprotection, to 3-hydroxypmliie 
(1). t4 The enantiome~c 3-hydmxyp~ij~ol derivative (+)-614 was obtained from alcohol (+)-4.t4 
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This chemoenzymatic method allows access to both enantiomers of 3-hydroxyproline (1) and the related 
3-hydroxy-2-hydroxymethylpyrrolidines from cyclopentadiene. The lipase-mediated acetylation/resolution in 
organic media provides convenient access to enantiopure intermediates (+)- and (-)-4 which should prove useful 
in the synthesis of a variety of enantiopure targets including pytrolizidine and indolizidine alkaloids. 
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The enzymatic acetylation of alcohol (f)-4 was conducted as follows: alcohol (f)-4 (500 mg, 2.6 mmol) 
was dissolved in isopropenyl acetate (3 mL) and to this solution SP-435 (immobilized recombinant Candi& 
antarctica lipase B) (50 mg, 10 % by wt.) was added. The reaction progress was monitored by GC. At ca. 
50% conversion (approx. 4.5 h) the reaction mixture was filtered, concentrate4 and chmmatographed on 
silica gel (hexane : ethyl acetate; 5: 1) to give acetate c-)-J (225 mg, 45% yield, 98% ee. by 19F NMR of the 
Mosher ester) and alcohol (+)-4 (260 mg, 43% yield, 93% ee.by ** NMR of the Mosher ester). 

For examples of other applications of the SP-435 biocatalyst from our laboratory see: Johnson, C. R. ; 
Braun, M. P. J. Am. Chem. Sot. 1993, 115, 11103; Johnson, C. R.; Bis, S. J. Tetrahedron Left. 1992, 
3.3, 7287; Johnson, C. R.; Sakaguchi, H. Synfeft 1992, 813. 

This exchange resulted in improved yields in the subsequent TEMPO oxidation. 
Physical Data: 1 as HCI salt: mp 225 oC d.; 1ojD 23 -95.5 (C 0.5, H20) [lit. lob, [o]D20 -lOi (C 1.0, 

H20)3: lH NMR as reported.‘t)t 
2 as HCI salt: mp 220 oC d.; la]B 23 - 12.7 (c 0.2, MeOH); IH &*3C NMR as reported.*7 

(f)-4: mp 76.0-77.0 OC; ‘H NMR: (CDCl-3) 6 5.75 (dd, J = 5.7, 2.1 Hz, IH); 5.45 (d, J = 3.9 Hz, 1H); 
5.00 (bs. 1H); 4.32 (bs. IH); 4.15 (m, 2H): 2.65 (ddd, J = 17.1, 7.2, 1.8 Hz, 1H); 2.17 (dd. J = 17.1, 
2.4 Hz, 1H); 1.36 (s, 9H); ‘3C NMR (CDCln) 6 156.6, 132.7, 128.2, 79.8, 79.7, 65.5, 39.4, 28.2. 

(-)-5: mp 71.0-72.0 “C, Ial& -107.4 (c 0.7, CHC13): tH NMR (CDC13) 6 5.85 (m, 1H): 5.78 (m. 
1H); 5.07 (m, 1H); 4.70-4.55 (m, 2H); 2.86 (dd, J = 17.7, 6.9 Hz, 1H); 2.27 (bd, J = 17.7 Hz, 1); 2.06 
(s, 3H); 1.44 (s, 9H); ‘3C NMR (CDCl3) 6 155.1, 131.8, 129.7, 79.6, 62.0. 38.0, 28.3, 21-I. 

(+)-4: mp 72.0-73.0 oC; [a]$3 +19.1 (c 1.0, CHC13). 

(-)-6: oil; [a]$3 -35.4 (c 3.1, CHCl3) [lit. ‘De, [a]$’ -34.4 (c 1.9, CHCl3)I. 

(+)-6: oil; [a]$ +33.5 (c 5.0, CHC13) 
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